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Abstract

The main aim of this article is to established certain symmetry identities for the 2-variable
Apostol type polynomials. The symmetry identities for some special polynomials related
to the 2-variable Apostol type polynomials are deduced as special cases. Certain interest-
ing examples are considered to establish the symmetry identities for the 2-variable Gould-
Hopper-Apostol type, 2-variable generalized Laguerre-Apostol type and 2-variable truncated
exponential-Apostol type polynomials. The special cases of the symmetry identities associated
with these polynomials are also given.
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1 Introduction and preliminaries

The special polynomials of two variables are useful from the point of view of applications in physics.
Also, these polynomials allow the derivation of a number of useful identities in a fairly straight
forward way and help in introducing new families of special polynomials. For example, Bretti et
al. [3] introduced general classes of the Appell polynomials of two variables by using properties
of an iterated isomorphism, related to the Laguerre-type exponentials. The 2-variable forms of
the Hermite, Laguerre and truncated exponential polynomials as well as their generalizations are
considered by several authors, see for example [2, 4–7,9].

In order to further stress the importance of the 2-variable special polynomials, Subuhi Khan
and Nusrat Raza [11] considered the 2-variable general polynomials (2VGP) pn(x, y), which are
defined by the generating function of the form:

extϕ(y, t) =
∞∑
n=0

pn(x, y)
tn

n!
, p0(x, y) = 1, (1.1)

where ϕ(y, t) has (at least the formal) series expansion

ϕ(y, t) =
∞∑
n=0

ϕn(y)
tn

n!
, ϕ0(y) 6= 0. (1.2)
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66 S. Khan, M. Riyasat, Gh. Yasmin

The 2VGP family pn(x, y) contains a number of important special polynomials of two variables.
Generating functions and series definitions for certain members belonging to the 2VGP family are
given in Table 1.

Table 1. Certain members belonging to the 2VGP pn(x, y) family.

S.No. ϕ(y, t) Name of the polynomials Generating functions Series definitions

I. eyt
m

Gould-Hopper ext+yt
m

=
∞∑
n=0

H
(m)
n (x, y) t

n

n!
H

(m)
n (x, y) = n!

[ n
m

]∑
k=0

yk xn−mk
k!(n−mk)!

polynomials H
(m)
n (x, y) [9]

II. eyt
2

2-variable Hermite Kampé ext+yt
2

=
∞∑
n=0

Hn(x, y) t
n

n!
Hn(x, y) = n!

[n
2

]∑
k=0

yk xn−2k

k!(n−2k)!

de Feriet polynomials Hn(x, y) [2]

III. C0(−ytm) 2-variable generalized Laguerre extC0(−ytm) =
∞∑
n=0

mLn(y, x) t
n

n! mLn(y, x) = n!

[ n
m

]∑
k=0

yk xn−mk
(k!)2(n−mk)!

polynomials mLn(y, x) [6]

IV. C0(yt) 2-variable Laguerre polynomials extC0(yt) =
∞∑
n=0

Ln(y, x) t
n

n!
Ln(y, x) = n!

n∑
k=0

(−1)kyk xn−k

(k!)2(n−k)!

Ln(y, x) [4]

V. 1
1−ytr 2-variable truncated exponential ext

1−ytr =
∞∑
n=0

e
(r)
n (x, y) t

n

n!
e
(r)
n (x, y) = n!

[n
r

]∑
k=0

yk xn−rk
(n−rk)!

polynomials of order r, e
(r)
n (x, y) [7]

VI. 1
1−yt2

2-variable truncated exponential ext

1−yt2
=
∞∑
n=0

[2]en(x, y) t
n

n! [2]en(x, y) = n!

[n
2

]∑
k=0

yk xn−2k

(n−2k)!

[2]en(x, y) [5]

Recently, Luo and Srivastava [16] introduced a unified family of the generalized Apostol type

polynomials. The Apostol type polynomials (ATP) F (α)
n (x;λ;µ, ν) (α ∈ N, λ, µ, ν ∈ C) of order α,

are defined by the generating function of the form:( 2µ tν

λet + 1

)α
ext =

∞∑
n=0

F (α)
n (x;λ;µ, ν)

tn

n!
, |t| < |log(−λ)|. (1.3)

The ATP F (α)
n (x;λ;µ, ν) are viewed as a unification and generalization of certain polynomials.

We mention these polynomials in Table 2.

Table 2. Certain special cases of the ATP F (α)
n (x;λ;µ, ν).

S. Values of Relation between Name of the Generating functions
No. the para- the ATP resultant

meters F(α)
n (x;λ;µ, ν) special

and its special case polynomials

I. λ → −λ (−1)αF(α)
n (x;−λ; 0, 1) = B

(α)
n (x;λ) Apostol-Bernoulli polynomials

(
t

λet−1

)α
ext =

∞∑
n=0

B
(α)
n (x;λ) t

n

n!

µ = 0, ν = 1 of order α, B
(α)
n (x;λ) [15] (|t| < |logλ|)

II. µ = 1, ν = 0 F(α)
n (x;λ; 1, 0) = E

(α)
n (x;λ) Apostol-Euler polynomials

(
2

λet+1

)α
ext =

∞∑
n=0

E
(α)
n (x;λ) t

n

n!

of order α, E
(α)
n (x;λ) [13] (|t| < |log(−λ)|)

III. µ = ν = 1 F(α)
n (x;λ; 1, 1) = G(α)

n (x;λ) Apostol-Genocchi polynomials
(

2t
λet+1

)α
ext =

∞∑
n=0

G(α)
n (x;λ) t

n

n!

of order α, G(α)
n (x;λ) [14] (|t| < |log(−λ)|)
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Finding symmetry identities for the 2-variable Apostol type polynomials 67

We note that, for λ = 1, the polynomials B
(α)
n (x;λ), E

(α)
n (x;λ) and G(α)n (x;λ) reduce to the

Bernoulli polynomials of order α, B
(α)
n (x), Euler polynomials of order α, E

(α)
n (x) and Genocchi

polynomials of order α, G
(α)
n (x), which are defined by means of the following generating functions

[8, 20]: ( t

et − 1

)α
ext =

∞∑
n=0

B(α)
n (x)

tn

n!
, |t| < 2π, (1.4)

( 2

et + 1

)α
ext =

∞∑
n=0

E(α)
n (x)

tn

n!
, |t| < π, (1.5)

( 2t

et + 1

)α
ext =

∞∑
n=0

G(α)
n (x)

tn

n!
, |t| < π, (1.6)

respectively.

For α = 1, the polynomials B
(α)
n (x), E

(α)
n (x) and G

(α)
n (x) reduce to the Bernoulli polynomials

Bn(x), Euler polynomials En(x) and Genocchi polynomials Gn(x), respectively.
In fact from (Table 2 (I, II and III)) and equations (1.4)-(1.6), we have the following relations:

B(α)
n (x; 1) = B(α)

n (x); E(α)
n (x; 1) = E(α)

n (x); G(α)n (x; 1) = G(α)
n (x). (1.7)

Also, we note that

B(1)
n (x) = Bn(x); E(1)

n (x) = En(x); G(1)
n (x) = Gn(x), n ∈ N0 := N ∪ {0}. (1.8)

Recently, Khan at el. [12] introduced the 2-variable Apostol type polynomials (2VATP) of

order α, pF (α)
n (x, y;λ;µ, ν) (α ∈ N, λ, µ, ν ∈ C) as the discrete Apostol type convolution of the

2VGP pn(x, y). The 2VATP pF (α)
n (x, y;λ;µ, ν) are defined by the following generating function [12,

p.1372(2.1)]:

( 2µ tν

λet + 1

)α
extϕ(y, t) =

∞∑
n=0

pF (α)
n (x, y;λ;µ, ν)

tn

n!
, |t| < |log(−λ)|. (1.9)

By making suitable choice for the function ϕ(y, t) in equation (1.9) and in view of Table 1,
the generating function and other results for the corresponding member belonging to the 2VATP

pF (α)
n (x, y;λ;µ, ν) are obtained in [12].

Yang in [22] derived symmetry identities for the Bernoulli polynomials of order, α B
(α)
n (x).

Further, Zhang and Yang in [23] derived certain symmetry identities for the polynomials B
(α)
n (x;λ)

and E
(α)
n (x;λ) involving generalized sum of integer powers Sk(n;λ) and generalized sum of alter-

native integer powers Mk(n;λ). Certain results for the Apostol-Genocchi polynomials G
(α)
n (x;λ)

of higher order are obtained [10]. Further, Özarslan [17] also derived some symmetry identities for

the unified Hermite-based Apostol polynomials HP(α)
n,β(x, y, z; k, a, b).

We recall the following definitions considered in [23]:
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68 S. Khan, M. Riyasat, Gh. Yasmin

Definition 1.1. For each integer k ≥ 0, the sum Sk(n) =
n∑
i=0

ik is known as the sum of integer

powers or simply the power sum. The exponential generating function for Sk(n) is given as:

∞∑
k=0

Sk(n)
tk

k!
= 1 + et + e2t + . . .+ ent =

e(n+1)t − 1

et − 1
. (1.10)

Definition 1.2. For an arbitrary real or complex parameter λ, the generalized sum of integer
powers Sk(n;λ) is defined by the following generating function:

λe(n+1)t − 1

λet − 1
=
∞∑
k=0

Sk(n;λ)
tk

k!
. (1.11)

From equations (1.10) and (1.11), it follows that

Sk(n; 1) = Sk(n). (1.12)

Definition 1.3. For each integer k ≥ 0, the sum Mk(n) =
n∑
i=0

(−1)kik is known as the sum of

alternative integer powers. The exponential generating function for Mk(n) is given as:

∞∑
k=0

Mk(n)
tk

k!
= 1− et + e2t + . . .+ (−1)nent =

1− (−et)(n+1)

et + 1
. (1.13)

Definition 1.4. For an arbitrary real or complex parameter λ, the generalized sum of alternative
integer powers Mk(n;λ) is defined by the following generating function:

1− λ(−et)(n+1)

λet + 1
=

∞∑
k=0

Mk(n;λ)
tk

k!
. (1.14)

We note that
Mk(n; 1) = Mk(n). (1.15)

Also, for even n, we have
Sk(n;−λ) =Mk(n;λ). (1.16)

The importance of the 2-variable forms of the special polynomials in applications and the work
of Yang [22], Zhang and Yang [23] and Özarslan [17] on symmetry identities provides motivation
to consider symmetry identities for more general families. In this article, symmetry identities for

the 2VATP pF (α)
n (x, y;λ;µ, ν) are derived. Further, by considering different members of the 2VGP

pn(x, y), the symmetry identities for certain members belonging to this family are also derived.

2 Symmetry identities

In order to derive the symmetry identity for the 2VATP pF (α)
n (x, y;λ;µ, ν), we prove the following

result:
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Finding symmetry identities for the 2-variable Apostol type polynomials 69

Theorem 2.1. For all integers c, d > 0 and n ≥ 0, α ≥ 1, λ, µ, ν ∈ C, the following symmetry

identity for the 2VATP pF (α)
n (x, y;λ;µ, ν) holds true:

∑n
k=0

(
n
k

)
cn−kdν+kpF (α)

n−k(dx, dy;λ;µ, ν)
∑k
l=0

(
k
l

)
Sl(c− 1;−λ)pF (α−1)

k−l (cX, cY ;λ;µ, ν)

=
∑n
k=0

(
n
k

)
dn−kcν+kpF (α)

n−k(cx, cy;λ;µ, ν)
∑k
l=0

(
k
l

)
Sl(d− 1;−λ)pF (α−1)

k−l (dX, dY ;λ;µ, ν).
(2.1)

Proof. Let

G(t) :=
2µ(2α−1)tν(2α−1)ecdxtϕ(y, cdt)(λecdt + 1)ecdXtϕ(Y, cdt)

(λect + 1)α(λedt + 1)α
, (2.2)

which on rearranging the powers becomes

G(t) =
1

cναdν(α−1)

(
2µcνtν

λect + 1

)α
ecdxtϕ(y, cdt)

(
λecdt + 1

λedt + 1

)(
2µdνtν

λedt + 1

)α−1
ecdXtϕ(Y, cdt). (2.3)

Since the expression (2.3) for G(t) is symmetric in c and d, therefore we can expand G(t) into
series in two ways. First, we consider the following expansion:

G(t) =
1

cναdν(α−1)

(
2µ(ct)ν

λect + 1

)α
ecdxtϕ(dy, ct)

(
λecdt + 1

λedt + 1

)(
2µ(dt)ν

λedt + 1

)α−1
ecdXtϕ(cY, dt). (2.4)

Using equations (1.9) and (1.11) in the r.h.s. of equation (2.4), we find

G(t) = 1
cναdν(α−1)

(∑∞
n=0 pF

(α)
n (dx, dy;λ;µ, ν) (ct)n

n!

)(∑∞
l=0 Sl(c− 1;−λ) (dt)l

l!

)
×
(∑∞

k=0 pF
(α−1)
k (cX, cY ;λ;µ, ν) (dt)k

k!

)
,

(2.5)

which on using [21, p.890 Corollary 2] gives

G(t) = 1
cναdνα

∑∞
n=0

(∑n
k=0

(
n
k

)
cn−kdν+kpF (α)

n−k(dx, dy;λ;µ, ν)
∑k
l=0

(
k
l

)
Sl(c− 1;−λ)

×pF (α−1)
k−l (cX, cY ;λ;µ, ν)

)
tn

n! .
(2.6)

In view of symmetry of c and d in expression (2.2), we have another expansion of G(t) as:

G(t) =
1

dναcν(α−1)

(
2µ(dt)ν

λedt + 1

)α
ecdxtϕ(cy, dt)

(
λecdt + 1

λect + 1

)(
2µ(ct)ν

λect + 1

)α−1
ecdXtϕ(dY, ct), (2.7)

which on using equations (1.9) and (1.11) in the r.h.s. gives

G(t) = 1
dναcν(α−1)

(∑∞
n=0 pF

(α)
n (cx, cy;λ;µ, ν) (dt)n

n!

)(∑∞
l=0 Sl(d− 1;−λ) (ct)l

l!

)
×
(∑∞

k=0 pF
(α−1)
k (dX, dY ;λ;µ, ν) (ct)k

k!

)
.

(2.8)
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70 S. Khan, M. Riyasat, Gh. Yasmin

Consequently, we have

G(t) = 1
dναcνα

∑∞
n=0

(∑n
k=0

(
n
k

)
dn−kcν+kpF (α)

n−k(cx, cy;λ;µ, ν)
∑k
l=0

(
k
l

)
Sl(d− 1;−λ)

×pF (α−1)
k−l (dX, dY ;λ;µ, ν)

)
tn

n! .
(2.9)

Equating the coefficients of same powers of t in r.h.s. of expansions (2.6) and (2.9), we are led
to assertion (2.1). q.e.d.

Next, we establish another symmetry identity for the 2VATP pF (α)
n (x, y;λ;µ, ν) by proving the

following result:

Theorem 2.2. For each pair of positive integers c, d and for all integers n ≥ 0, α ≥ 1, λ, µ, ν ∈ C,

the following symmetry identity for the 2VATP pF (α)
n (x, y;λ;µ, ν) holds true:

n∑
k=0

(
n
k

) c−1∑
i=0

d−1∑
j=0

(−λ)
i+j

ckdn−kpF (α)
k

(
dx+ d

c i, dy;λ;µ, ν
)
pF (α)

n−k

(
cX + c

dj, cY ;λ;µ, ν
)

=
n∑
k=0

(
n
k

) d−1∑
i=0

c−1∑
j=0

(−λ)
i+j

dkcn−kpF (α)
k

(
cx+ c

d i, cy;λ;µ, ν
)
pF (α)

n−k

(
dX + d

c j, dY ;λ;µ, ν
)
.

(2.10)

Proof. Let

H(t) :=
22µαt2ναecdxtϕ(y, cdt)(λcecdt + 1)(λdecdt + 1)ecdXtϕ(Y, cdt)

(λect + 1)α+1(λedt + 1)α+1
, (2.11)

which on rearranging the powers becomes

H(t) =
1

cναdνα

(
2µcνtν

λect + 1

)α
ecdxtϕ(y, cdt)

(λcecdt + 1

λedt + 1

)( 2µdνtν

λedt + 1

)α
ecdXtϕ(Y, cdt)

(λdecdt + 1

λect + 1

)
.

(2.12)
Since expression (2.12) for H(t) is symmetric in c and d, therefore we can expand H(t) into

series in two ways. First, we consider the following expansion:

H(t) =
1

cναdνα

(
2µcνtν

λect + 1

)α
ecdxtϕ(dy, ct)

(λcecdt + 1

λedt + 1

)( 2µdνtν

λedt + 1

)α
ecdXtϕ(cY, dt)

(λdecdt + 1

λect + 1

)
.

(2.13)

Now, using the series expansions for
(
λcecdt+1
λedt+1

)
and

(
λdecdt+1
λect+1

)
in the r.h.s. of equation (2.13),

we find

H(t) =
1

cναdνα

(
2µ(ct)

ν

λect + 1

)α
ecdxtϕ(dy, ct)

c−1∑
i=0

(−λ)iedti
(

2µ(dt)
ν

λedt + 1

)α
ecdXtϕ(cY, dt)

d−1∑
j=0

(−λ)jectj .

(2.14)
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Finding symmetry identities for the 2-variable Apostol type polynomials 71

Combining the exponential terms in the above equation, we have

H(t) = 1
cναdνα

c−1∑
i=0

(−λ)i
(

2µ(ct)ν

λect+1

)α
e

(
dx+ d

c i
)
ctϕ(dy, ct)

d−1∑
j=0

(−λ)j
(

2µ(dt)ν

λedt+1

)α
×e
(
cX+ c

d j
)
dtϕ(cY, dt),

(2.15)

which on using equation (1.9) becomes

H(t) = 1
cναdνα

(
c−1∑
i=0

(−λ)i
∞∑
n=0

pF (α)
n

(
dx+ d

c i, dy;λ;µ, ν
) (ct)n

n!

)
×

(
d−1∑
j=0

(−λ)j
∞∑
n=0

pF (α)
n

(
cX + c

dj, cY ;λ;µ, ν
) (dt)n

n!

)
.

(2.16)

Applying the Cauchy product rule in the r.h.s. of equation (2.16), we find

H(t) = 1
cναdνα

∞∑
n=0

n∑
k=0

(
n
k

) c−1∑
i=0

d−1∑
j=0

(−λ)i+jckdn−kpF (α)
k

(
dx+ d

c i, dy;λ;µ, ν
)

×pF (α)
n−k

(
cX + c

dj, cY ;λ;µ, ν
)
tn

n! .

(2.17)

Using the similar plan, we obtain the second expansion of H(t) as:

H(t) = 1
cναdνα

∞∑
n=0

n∑
k=0

(
n
k

) d−1∑
i=0

c−1∑
j=0

(−λ)i+jdkcn−kpF (α)
k

(
cx+ c

d i, cy;λ;µ, ν
)

×pF (α)
n−k

(
dX + d

c j, dY ;λ;µ, ν
)
tn

n! .

(2.18)

Equating the coefficients of same powers of t in r.h.s. of expansions (2.17) and (2.18), we are
led to assertion (2.10).

q.e.d.

Remark 2.1. In view of the special cases of the ATP F (α)
n (x;λ;µ, ν) given in Table 2, the corre-

sponding 2-variable Apostol type polynomials are defined in [12, p.1374(Table 2.1)]. Thus, by taking

suitable values of the parameters in identities (2.1) and (2.10) of the 2VATP pF (α)
n (x, y;λ;µ, ν), the

symmetry identities for the corresponding special cases can be obtained. We present the symmetry
identities for these special cases in Table 3.
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72 S. Khan, M. Riyasat, Gh. Yasmin

Table 3. Symmetry identities for the polynomials pB
(α)
n (x, y;λ), pE

(α)
n (x, y;λ)

and pG(α)n (x, y;λ).

S. Values of Relation between Name of the Symmetry identities for the polynomials pB
(α)
n (x, y;λ), pE

(α)
n (x, y;λ)

No. the para- the 2VATP resultant and pG
(α)
n (x, y;λ)

meters pF
(α)
n (x, y;λ;µ, ν) special

and its special case polynomials

I. λ → −λ (−1)α 2-variable
n∑
k=0

(
n
k

)
cn−kdν+k

pB
(α)
n−k(dx, dy;λ)

k∑
l=0

(
k
l

)
Sl(c − 1;λ)pB

(α−1)
k−l (cX, cY ;λ)

µ = 0 pF
(α)
n (x, y;−λ; 0, 1) Apostol- =

n∑
k=0

(
n
k

)
dn−kcν+k

pB
(α)
n−k(cx, cy;λ)

k∑
l=0

(
k
l

)
Sl(d − 1;λ)pB

(α−1)
k−l (dX, dY ;λ)

ν = 1 = pB
(α)
n (x, y;λ) Bernoulli and

polynomials
n∑
k=0

(
n
k

) c−1∑
i=0

d−1∑
j=0

(λ)i+jckdn−kpB
(α)
k

(
dx + d

c
i, dy;λ)pB

(α)
n−k

(
cX + c

d
j, cY ;λ

)
(2VABP) of

n∑
k=0

(
n
k

) d−1∑
i=0

c−1∑
j=0

(λ)i+jdkcn−kpB
(α)
k

(
cx + c

d
i, cy;λ

)
pB

(α)
n−k

(
dX + d

c
j, dY ;λ

)
order α

II. µ = 1 pF
(α)
n (x, y;λ; 1, 0) 2-variable

n∑
k=0

(
n
k

)
cn−kdν+k

pE
(α)
n−k(dx, dy;λ)

k∑
l=0

(
k
l

)
Ml(c − 1;λ)pE

(α−1)
k−l (cX, cY ;λ)

ν = 0 = pE
(α)
n (x, y;λ) Apostol- =

n∑
k=0

(
n
k

)
dn−kcν+k

pE
(α)
n−k(cx, cy;λ)

k∑
l=0

(
k
l

)
Ml(d − 1;λ)pE

(α−1)
k−l (dX, dY ;λ)

Euler and

polynomials
n∑
k=0

(
n
k

) c−1∑
i=0

d−1∑
j=0

(−λ)i+jckdn−kpE
(α)
k

(
dx + d

c
i, dy;λ)pE

(α)
n−k

(
cX + c

d
j, cY ;λ

)
(2VAEP) of

n∑
k=0

(
n
k

) d−1∑
i=0

c−1∑
j=0

(−λ)i+jdkcn−kpE
(α)
k

(
cx + c

d
i, cy;λ

)
pE

(α)
n−k

(
dX + d

c
j, dY ;λ

)
order α

III. µ = 1 pF
(α)
n (x, y;λ; 1, 1) 2-variable

n∑
k=0

(
n
k

)
cn−kdν+k

pG
(α)
n−k(dx, dy;λ)

k∑
l=0

(
k
l

)
Ml(c − 1;λ)pG

(α−1)
k−l (cX, cY ;λ)

ν = 1 = pG
(α)
n (x, y;λ) Apostol- =

n∑
k=0

(
n
k

)
dn−kcν+k

pG
(α)
n−k(cx, cy;λ)

k∑
l=0

(
k
l

)
Ml(d − 1;λ)pG

(α−1)
k−l (dX, dY ;λ)

Genocchi and

polynomials
n∑
k=0

(
n
k

) c−1∑
i=0

d−1∑
j=0

(−λ)i+jckdn−kpG
(α)
k

(
dx + d

c
i, dy;λ)pG

(α)
n−k

(
cX + c

d
j, cY ;λ

)
(2VAGP) of

n∑
k=0

(
n
k

) d−1∑
i=0

c−1∑
j=0

(−λ)i+jdkcn−kpG
(α)
k

(
cx + c

d
i, cy;λ

)
pG

(α)
n−k

(
dX + d

c
j, dY ;λ

)
order α

Remark 2.2. We note that, for λ = 1 and in view of relations (1.7) and (1.12), the symmetry iden-

tities for the 2VABP pB
(α)
n (x, y;λ), 2VAEP pE

(α)
n (x, y;λ) and 2VAGP pG(α)n (x, y;λ) reduce to the

corresponding identities for the 2-variable Bernoulli polynomials (2VBP) (of order α) pB
(α)
n (x, y),

2-variable Euler polynomials (2VEP) (of order α) pE
(α)
n (x, y) and 2-variable Genocchi polynomials

(2VGP) (of order α) pG
(α)
n (x, y), respectively.

Remark 2.3. Again, we note that for λ = α = 1 and in view of relations (1.7), (1.8) and (1.12),

the identities mentioned in Table 3 for the 2VABP pB
(α)
n (x, y;λ), 2VAEP pE

(α)
n (x, y;λ) and 2VAGP

pG(α)n (x, y;λ) reduce to the corresponding identities for the 2-variable Bernoulli polynomials (2VBP)

pBn(x, y), 2-variable Euler polynomials (2VEP) pEn(x, y) and 2-variable Genocchi polynomials
(2VGP) pGn(x, y).

In the next section, symmetry identities for certain members belonging to the family of 2VATP

pF (α)
n (x, y;λ;µ, ν) are derived.
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3 Examples

The members belonging to the 2VGP family are given in Table 1. It has been shown in [12], that
corresponding to each member belonging to the family of 2VGP pn(x, y), there is a new special

polynomial belonging to the 2VATP pF (α)
n (x, y;λ;µ, ν) family.

In order to derive the symmetry identities for these members, we consider the following examples:

Example 3.1. By taking ϕ(y, t) = eyt
m

(Table 1 (I)) in the l.h.s. of generating function (1.9),
we get the following generating function for the 2-variable Gould-Hopper-Apostol type polynomials

(2VGHATP) H(m)F (α)
n (x, y;λ;µ, ν) [12, p.1375(3.1)]:( 2µ tν

λet + 1

)α
ext+yt

m

=
∞∑
n=0

H(m)F (α)
n (x, y;λ;µ, ν)

tn

n!
. (3.1)

To derive the symmetry identities for the 2VGHATP H(m)F (α)
n (x, y;λ;µ, ν), we prove the fol-

lowing results:

Theorem 3.1. For all integers c, d > 0 and n ≥ 0, α ≥ 1, λ, µ, ν ∈ C, the following symmetry

identity for the 2VGHATP H(m)F (α)
n (x, y;λ;µ, ν) holds true:∑n

k=0

(
n
k

)
cn−kdν+kH(m)F (α)

n−k(dx, dmy;λ;µ, ν)
∑k
l=0

(
k
l

)
Sl(c− 1;−λ)H(m)F (α−1)

k−l (cX, cmY ;λ;µ, ν)

=
∑n
k=0

(
n
k

)
dn−kcν+kH(m)F (α)

n−k(cx, cmy;λ;µ, ν)
∑k
l=0

(
k
l

)
Sl(d− 1;−λ)H(m)F (α−1)

k−l (dX, dmY ;λ;µ, ν).
(3.2)

Proof. Taking ϕ(y, cdt) = ey(cdt)
m

and ϕ(Y, cdt) = eY (cdt)m in expression (2.2) of G(t), we have

G1(t) :=
2µ(2α−1)tν(2α−1)ecdxt+y(cdt)

m

(λecdt + 1)ecdXt+Y (cdt)m

(λect + 1)α(λedt + 1)α
. (3.3)

Rearranging the powers in expression (3.3), we find

G1(t) =
1

cναdν(α−1)

(
2µcνtν

λect + 1

)α
ecdxt+y(cdt)

m

(
λecdt + 1

λedt + 1

)(
2µdνtν

λedt + 1

)α−1
ecdXt+Y (cdt)m . (3.4)

Since the expression (3.4) for G1(t) is symmetric in c and d. Therefore G1(t) can be expanded
into series in two ways. Consider the expansion

G1(t) =
1

cναdν(α−1)

(
2µcνtν

λect + 1

)α
edxct+d

my(ct)m
(
λecdt + 1

λedt + 1

)(
2µdνtν

λedt + 1

)α−1
ecXdt+c

mY (dt)m ,

(3.5)
which in view of equations (1.11) and (3.1) becomes

G1(t) = 1
cναdν(α−1)

(∑∞
n=0 H(m)F (α)

n (dx, dmy;λ;µ, ν) (ct)n

n!

)(∑∞
l=0 Sl(c− 1;−λ) (dt)l

l!

)
×
(∑∞

k=0 H(m)F (α−1)
k (cX, cmY ;λ;µ, ν) (dt)k

k!

)
.

(3.6)
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Again, using [21, p.890 Corollary 2], we find

G1(t) = 1
cναdνα

∑∞
n=0

(∑n
k=0

(
n
k

)
cn−kdν+kH(m)F (α)

n−k(dx, dmy;λ;µ, ν)
∑k
l=0

(
k
l

)
Sl(c− 1;−λ)

×H(m)F (α−1)
k−l (cX, cmY ;λ;µ, ν)

)
tn

n! .

(3.7)
Using a similar plan, we have

G1(t) = 1
dναcνα

∑∞
n=0

(∑n
k=0

(
n
k

)
dn−kcν+kH(m)F (α)

n−k(cx, cmy;λ;µ, ν)
∑k
l=0

(
k
l

)
Sl(d− 1;−λ)

×H(m)F (α−1)
k−l (dX, dmY ;λ;µ, ν)

)
tn

n! .

(3.8)
Equating the coefficients of same powers of t in r.h.s. of expansions (3.7) and (3.8), we are led

to assertion (3.2). q.e.d.

Theorem 3.2. For each pair of positive integers c, d and for all integers n ≥ 0, α ≥ 1, λ, µ, ν ∈ C,

the following symmetry identity for the 2VGHATP H(m)F (α)
n (x, y;λ;µ, ν) holds true:

n∑
k=0

(
n
k

) c−1∑
i=0

d−1∑
j=0

(−λ)i+jckdn−kH(m)F (α)
k

(
dx+ d

c i, d
my;λ;µ, ν

)
H(m)F (α)

n−k

(
cX + c

dj, c
mY ;λ;µ, ν

)

=
n∑
k=0

(
n
k

) d−1∑
i=0

c−1∑
j=0

(−λ)i+jdkcn−kH(m)F (α)
k

(
cx+ c

d i, c
my;λ;µ, ν

)
H(m)F (α)

n−k

(
dX + d

c j, d
mY ;λ;µ, ν

)
.

(3.9)

Proof. Taking ϕ(y, cdt) = ey(cdt)
m

and ϕ(Y, cdt) = eY (cdt)m in expression (2.11) of H(t), we have

H1(t) :=
22µαt2ναecdxtey(cdt)

m

(λcecdt + 1)(λdecdt + 1)ecdXteY (cdt)m

(λect + 1)α+1(λedt + 1)α+1
. (3.10)

Rearranging the powers in expression (3.10), we find

H1(t) =
1

cναdνα

(
2µcνtν

λect + 1

)α
ecdxt+y(cdt)

m
(λcecdt + 1

λedt + 1

)( 2µdνtν

λedt + 1

)α
ecdXt+Y (cdt)m

(λdecdt + 1

λect + 1

)
.

(3.11)
Since the expression (3.11) for H1(t) is symmetric in c and d. Therefore, H1(t) can be expanded

into series in two ways. Consider the expansion

H1(t) =
1

cναdνα

(
2µcνtν

λect + 1

)α
edxct+d

my(ct)m
(λcecdt + 1

λedt + 1

)( 2µdνtν

λedt + 1

)α
edXct+d

mY (ct)m
(λdecdt + 1

λect + 1

)
.

(3.12)

Now, using the series expansions for
(
λcecdt+1
λedt+1

)
and

(
λdecdt+1
λect+1

)
in the r.h.s. of above equation,

we find

H1(t) =
1

cναdνα

(
2µ(ct)

ν

λect + 1

)α
edxct+d

my(ct)m
c−1∑
i=0

(−λ)iedti
(

2µ(dt)
ν

λedt + 1

)α
edXct+d

mY (ct)m
d−1∑
j=0

(−λ)jectj .

(3.13)
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Combining the exponential terms in the above equation, we have

H1(t) =
1

cναdνα

c−1∑
i=0

(−λ)i
(

2µ(ct)
ν

λect + 1

)α
e

(
dx+ d

c i
)
ct+dmy(ct)m

d−1∑
j=0

(−λ)j
(

2µ(dt)
ν

λedt + 1

)α
e

(
cX+ c

d j
)
dt+cmY (dt)m ,

(3.14)
which on using equation (3.1) becomes

H1(t) = 1
cναdνα

(
c−1∑
i=0

(−λ)i
∞∑
n=0

H(m)F (α)
n

(
dx+ d

c i, d
my;λ;µ, ν

) (ct)n

n!

)
×

(
d−1∑
j=0

(−λ)j
∞∑
n=0

H(m)F (α)
n

(
cX + c

dj, c
mY ;λ;µ, ν

) (dt)n

n!

)
.

(3.15)

Applying the Cauchy product rule in the r.h.s. of equation (3.15), we find

H1(t) = 1
cναdνα

∞∑
n=0

n∑
k=0

(
n
k

) c−1∑
i=0

d−1∑
j=0

(−λ)i+jckdn−kH(m)F (α)
k

(
dx+ d

c i, d
my;λ;µ, ν

)
×H(m)F (α)

n−k
(
cX + c

dj, c
mY ;λ;µ, ν

)
tn

n! .

(3.16)

Using a similar plan, we obtain the second expansion of H1(t) as:

H1(t) = 1
cναdνα

∞∑
n=0

n∑
k=0

(
n
k

) d−1∑
i=0

c−1∑
j=0

(−λ)i+jdkcn−kH(m)F (α)
k

(
cx+ c

d i, c
my;λ;µ, ν

)
×H(m)F (α)

n−k
(
dX + d

c j, d
mY ;λ;µ, ν

)
tn

n! .

(3.17)

Equating the coefficients of same powers of t in r.h.s. of expansions (3.16) and (3.17), we are
led to assertion (3.9).

q.e.d.

Remark 3.1. By taking suitable values of the parameters in identities (3.2) and (3.9) and in view of

relations given in Table 3 (I-III), the symmetry identities for the special cases of H(m)F (α)
n (x, y;λ;µ, ν)

can be obtained.

Remark 3.2. We know that for m = 2, the GHP H
(m)
n (x, y) reduce to 2-variable Hermite Kampé

de Feriet polynomials (2VHKdFP) Hn(x, y) (Table 1 (II)). Therefore, taking m = 2 in symmetry

identities (3.2) and (3.9) of the 2VGHATP H(m)F (α)
n (x, y;λ;µ, ν), we find the symmetry identities

for the 2-variable Hermite-Apostol type polynomials (2VHATP) HF (α)
n (x, y;λ;µ, ν). These identi-

ties can also be viewed as particular cases of the identities obtained in [17]. Further, taking suitable

values of the parameters in identities of the 2VHATP HF (α)
n (x, y;λ;µ, ν) and in view of relations

given in Table 3 (I-III), we obtain the symmetry identities for the special cases of the 2VHATP

HF (α)
n (x, y;λ;µ, ν), see for example [17,19].

Remark 3.3. We know that for x→ 2x and y = −1, the 2VHKdFP Hn(x, y) reduce to the classical
Hermite polynomials Hn(x) [1]. Therefore, taking x→ 2x and y = −1 in identities of the 2VHATP

HF (α)
n (x, y;λ;µ, ν), we obtain the symmetry identities for the Hermite-Apostol type polynomials,
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which may be denoted by HF (α)
n (x;λ;µ, ν). Further, taking suitable values of the parameters in

identities of the HF (α)
n (x;λ;µ, ν), the corresponding symmetry identities for the special cases of

HF (α)
n (x;λ;µ, ν) can be obtained, see for example [18].

Example 3.2. By taking ϕ(y, t) = C0(−ytm) (Table 1 (III)) in the l.h.s. of generating function
(1.9), we get the following generating function for the 2-variable generalized Laguerre-Apostol type

polynomials (2VGLATP)
mLF

(α)
n (y, x;λ;µ, ν) [12, p.1377(3.4)]:( 2µ tν

λet + 1

)α
extC0(−ytm) =

∞∑
n=0

mLF (α)
n (y, x;λ;µ, ν)

tn

n!
. (3.18)

We derive the symmetry identities for the 2VGLATP
mLF

(α)
n (y, x;λ;µ, ν) by proving the fol-

lowing results:

Theorem 3.3. For all integers c, d > 0 and n ≥ 0, α ≥ 1, λ, µ, ν ∈ C, the following symmetry

identity for the 2VGLATP
mLF

(α)
n (y, x;λ;µ, ν) holds true:∑n

k=0

(
n
k

)
cn−kdν+kmLF

(α)
n−k(dmy, dx;λ;µ, ν)

∑k
l=0

(
k
l

)
Sl(c− 1;−λ)mLF

(α−1)
k−l (cmY, cX;λ;µ, ν)

=
∑n
k=0

(
n
k

)
dn−kcν+k

mLF
(α)
n−k(cmy, cx;λ;µ, ν)

∑k
l=0

(
k
l

)
Sl(d− 1;−λ)

mLF
(α−1)
k−l (dmY, dX;λ;µ, ν).

(3.19)

Proof. Taking ϕ(y, cdt) = C0(−y(cdt)m) and ϕ(Y, cdt) = C0(−Y (cdt)m) in expression (2.2) of G(t),
we have

G2(t) :=
2µ(2α−1)tν(2α−1)ecdxtC0(−y(cdt)m)(λecdt + 1)ecdXtC0(−Y (cdt)m)

(λect + 1)α(λedt + 1)α
. (3.20)

Now, rearranging the powers in expression (3.20) of G2(t) and using the fact that G2(t) is
symmetric in c and d, we can obtain two expansions of G2(t) as in Theorem 3.1. Finally, equating
the coefficients of same powers of t in these expansions, we get assertion (3.19). q.e.d.

Theorem 3.4. For each pair of positive integers c, d and for all integers n ≥ 0, α ≥ 1, λ, µ, ν ∈ C,

the following symmetry identity for the 2VGLATP mLF
(α)
n (y, x;λ;µ, ν) holds true:

n∑
k=0

(
n
k

) c−1∑
i=0

d−1∑
j=0

(−λ)i+jckdn−kmLF
(α)
k

(
dmy, dx+ d

c i;λ;µ, ν
)
mLF

(α)
n−k

(
cmY, cX + c

dj;λ;µ, ν
)

=
n∑
k=0

(
n
k

) d−1∑
i=0

c−1∑
j=0

(−λ)i+jdkcn−kmLF
(α)
k

(
cmy, cx+ c

d i;λ;µ, ν
)
mLF

(α)
n−k

(
dmY, dX + d

c j;λ;µ, ν
)
.

(3.21)

Proof. Taking ϕ(y, cdt) = C0(−y(cdt)m) and ϕ(Y, cdt) = C0(−Y (cdt)m) in expression (2.11) of
H(t), we have

H2(t) :=
22µαt2ναecdxtC0(−y(cdt)m)(λcecdt + 1)(λdecdt + 1)ecdXtC0(−Y (cdt)m)

(λect + 1)α+1(λedt + 1)α+1
. (3.22)

q.e.d.
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Now, rearranging the powers in expression (3.22) of H2(t) and using the fact that H2(t) is sym-
metric in c and d, we can obtain two expansions of H2(t) as in Theorem 3.2. Finally, equating the
coefficients of same powers of t in these expansions, we get assertion (3.21).

Remark 3.4. By taking suitable values of the parameters in identities (3.19) and (3.21) and in view

of relations Table 3 (I-III), the symmetry identities for the special cases of the mLF
(α)
n (y, x;λ;µ, ν)

can be obtained.

Remark 3.5. We know that for m = 1 and y → −y, the 2VGLP mLn(y, x) reduce to the 2-variable
Laguerre polynomials Ln(y, x) (Table 1 (IV)). Therefore, taking m = 1 and y → −y in symmetry

identities (3.19) and (3.21) of the 2VGLATP
mLF

(α)
n (y, x;λ;µ, ν), we obtain the symmetry identi-

ties for the 2-variable Laguerre-Apostol type polynomials (2VLATP) LF (α)
n (y, x;λ;µ, ν).

Further, taking suitable values of the parameters in identities for the LF (α)
n (y, x;λ;µ, ν) and in

view of relations given in Table 3 (I-III), we obtain the symmetry identities for the special cases of

the 2VLATP LF (α)
n (y, x;λ;µ, ν).

Remark 3.6. We know that for x = 1, the 2VLP Ln(y, x) reduce to the classical Laguerre poly-

nomials Ln(y) [1]. Therefore, taking x = 1 in identities for the LF (α)
n (y, x;λ;µ, ν), we obtain

the corresponding identities for the Laguerre-Apostol type polynomials, which may be denoted by

LF (α)
n (y;λ;µ, ν).

Further, taking suitable values of the parameters in identities of the LF (α)
n (y;λ;µ, ν), the cor-

responding symmetry identities for the special cases of LF (α)
n (y;λ;µ, ν) can be obtained.

Example 3.3. By taking ϕ(y, t) = 1
1−ytr and ϕ(Y, t) = 1

1−Y tr (Table 1 (V)) in the l.h.s. of

generating function (1.9), we get the following generating function for the 2-variable truncated

exponential-Apostol type polynomials (2VTEATP) e(r)F
(α)
n (x, y;λ;µ, ν) [12, p.1377(3.7)]:

( 2µ tν

λet + 1

)α( ext

1− ytr
)

=
∞∑
n=0

e(r)F (α)
n (x, y;λ;µ, ν)

tn

n!
. (3.23)

We derive the symmetry identities of 2VTEATP e(r)F
(α)
n (x, y;λ;µ, ν) by proving the following

results:

Theorem 3.5. For all integers c, d > 0 and n ≥ 0, α ≥ 1, λ, µ, ν ∈ C, the following symmetry

identity for the 2VTEATP e(r)F
(α)
n (x, y;λ;µ, ν) holds true:∑n

k=0

∑k
l=0

(
n
k

)(
k
l

)
cn−kdν+ke(r)F

(α)
n−k(dx, dry;λ;µ, ν)Sl(c− 1;−λ)e(r)F

(α−1)
k−l (cX, crY ;λ;µ, ν)

=
∑n
k=0

∑k
l=0

(
n
k

)(
k
l

)
dn−kcν+ke(r)F

(α)
n−k(cx, cry;λ;µ, ν)Sl(d− 1;−λ)e(r)F

(α−1)
k−l (dX, drY ;λ;µ, ν).

(3.24)
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Proof. Taking ϕ(y, cdt) = 1
1−y(cdt)r and ϕ(Y, cdt) = 1

1−Y (cdt)r in expression (2.2) of G(t), we have

G3(t) :=
2µ(2α−1)tν(2α−1)ecdxt 1

1−y(cdt)r (λecdt + 1)ecdXt 1
1−Y (cdt)r

(λect + 1)α(λedt + 1)α
. (3.25)

Now, rearranging the powers in expression (3.25) of G3(t) and using the fact that G3(t) is
symmetric in c and d, we can obtain two expansions of G3(t) as in Theorem 3.1. Finally, equating
the coefficients of same powers of t in these expansions, we get assertion (3.24). q.e.d.

Theorem 3.6. For each pair of positive integers c, d and for all integers n ≥ 0, α ≥ 1, λ, µ, ν ∈ C,

the following symmetry identity for the 2VTEATP e(r)F
(α)
n (x, y;λ;µ, ν) holds true:

n∑
k=0

(
n
k

) c−1∑
i=0

d−1∑
j=0

(−λ)i+jckdn−ke(r)F
(α)
k

(
dx+ d

c i, d
ry;λ;µ, ν

)
e(r)F

(α)
n−k

(
cX + c

dj, c
rY ;λ;µ, ν

)
=

n∑
k=0

(
n
k

) d−1∑
i=0

c−1∑
j=0

(−λ)i+jdkcn−ke(r)F
(α)
k

(
cx+ c

d i, c
ry;λ;µ, ν

)
e(r)F

(α)
n−k

(
dX + d

c j, d
rY ;λ;µ, ν

)
.

(3.26)

Proof. Taking ϕ(y, cdt) = 1
1−y(cdt)r and ϕ(Y, cdt) = 1

1−Y (cdt)r in expression (2.11) of H(t), we have

H3(t) :=
22µαt2ναecdxt 1

1−y(cdt)r (λcecdt + 1)(λdecdt + 1)ecdXt 1
1−Y (cdt)r

(λect + 1)α+1(λedt + 1)α+1
. (3.27)

Now, rearranging the powers in expression (3.27) of H3(t) and using the fact that H3(t) is
symmetric in c and d, we can obtain two expansions of H3(t) as in Theorem 3.2. Finally, equating
the coefficients of same powers of t in these expansions, we get assertion (3.26).

q.e.d.

Remark 3.7. By taking suitable values of the parameters in identities (3.24) and (3.26) and in view

of relations Table 3 (I-III), the symmetry identities for the special cases of the e(r)F
(α)
n (x, y;λ;µ, ν)

can be obtained.

Remark 3.8. We know that for r = 2, the 2VTEP e(r)(x, y) of order r reduce to the 2VTEP

[2]en(x, y) (Table 1 (VI)). Therefore, taking r = 2 in symmetry identities (3.24) and (3.26) of the

2VTEATP e(r)F
(α)
n (x, y;λ;µ, ν), we obtain the symmetry identities for the

[2]eF
(α)
n (x, y;λ;µ, ν).

Further, taking suitable values of the parameters in identities of the
[2]eF

(α)
n (x, y;λ;µ, ν) and in

view of relations given in Table 3 (I-III), we obtain the symmetry identities for the special cases of

[2]eF
(α)
n (x, y;λ;µ, ν).

Remark 3.9. We know that for y = 1, the 2VTEP [2]en(x, y) reduce to the truncated exponential

polynomials [2]en(x) [5]. Therefore, taking y = 1 in the identities of the
[2]eF

(α)
n (x, y;λ;µ, ν),

we obtain the corresponding identities for the truncated exponential Apostol type polynomials,

which may be denoted by
[2]eF

(α)
n (x;λ;µ, ν). Further, taking suitable values of the parameters in
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identities of the
[2]eF

(α)
n (x;λ;µ, ν), the corresponding symmetry identities for the special cases of

[2]eF
(α)
n (x;λ;µ, ν) can be obtained.

The Bernoulli, Euler and Genocchi numbers Bn, En and Gn have deep connections with number
theory and occur in combinatorics. These numbers appear as special values of the Bernoulli, Euler
and Genocchi polynomials Bn(x), En(x) and Gn(x), respectively given as

Bn := Bn(0) := B(1)
n (0); En := En(0) := E(1)

n (0); Gn := Gn(0) := G(1)
n (0), (3.28)

respectively.

The Apostol type numbers of order α denoted by F (α)
n (λ;µ, ν) are defined by the generating

function ( 2µ tν

λet + 1

)α
=
∞∑
n=0

F (α)
n (λ;µ, ν)

tn

n!
, |t| < |log(−λ)|. (3.29)

Consequently, from equations (1.3) and (3.29), we have

F (α)
n (λ;µ, ν) := F (α)

n (0;λ;µ, ν). (3.30)

In view of the special cases mentioned in Table 2 and using the fact that

B(α)
n (0;λ) = B(α)

n (λ); E(α)
n (0;λ) = E(α)

n (λ); G(α)n (0;λ) = G(α)n (λ), (3.31)

where B
(α)
n (λ), E

(α)
n (λ) and G(α)n (λ) denote the Apostol-Bernoulli, Apostol-Euler and Apostol-

Genocchi numbers of order α, respectively, we have the following special cases of F (α)
n (λ;µ, ν) [12]:

(−1)αF (α)
n (−λ; 0, 1) = B(α)

n (λ); F (α)
n (λ; 1, 0) = E(α)

n (λ); F (α)
n (λ; 1, 1) = G(α)n (λ). (3.32)

The Hermite Apostol type numbers (HATN) of order α, HF (α)
n (λ;µ, ν) are defined as [12]:

HF (α)
n (λ;µ, ν) =

n∑
k=0

(
n

k

)
F (α)
n−k(λ;µ, ν)Hk, (3.33)

where Hk := Hk(0) are the Hermite numbers. We also note that [12, p.1380(4.12)]:

HF (α)
n (0;λ;µ, ν) := HF (α)

n (λ;µ, ν). (3.34)

The importance of the numbers related to the polynomials provides motivation to establish the

results for the HATN HF (α)
n (λ;µ, ν) of order α and the numbers related to other special polynomi-

als considered in this paper. This aspect may be taken in further investigation.
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